
Reduction of NOx emissions of medium combustion plants using biomass

11th TFTEI Annual Meeting - October 8, 2025

FORMATION OF NOX DURING COMBUSTION

Thermal NO

- Fuels concerned: all fuels
- Parameters governing formation
 - Temperature
 - Air excess
 - Residence time of flue gas in combustion chamber

Fuel NO

- Fuels concerned : Coal, Heavy Fuel Oil (HFO), Biomass, process gas containing nitrogenous species (NH₃, HCN, etc,)
- Parameters governing formation:
 - Nitrogen content of fuel
 - Local fuel/air ratio

NO	HFO	Nat Gas	Biomass
Thermal NO	25 – 35 %	100 %	10 – 20 %
Fuel NO	65 – 75 %	0	80 – 90 %

Biomass fuel, depending on its origin, has a highly variable nitrogen content, ranging from about 0.2% for very clean wood to more than 2% for wood derived from waste materials

NOx REDUCTION TECHNOLOGIES

Primary techniques (preventive)

- Combustion adjustments, reduction of excess air
- Flue gas recycling
- Air staging
- Low-NOx systems (burner, combustion chamber geometry)

Secondary techniques (curative)

- Selective Non Catalytic Reduction (SNCR)
- Selective Catalytic Reduction(SCR)

Increasing investment cost

OBJECTIVES: Compliance with regulations

- NOx limits lower and lower
- Fluctuant fuel quality
- Optimized investment/operating cost
- Reliable and easily usable system

PRIMAIRY TECHNIQUES

OPTIMIZATIONS

- Optimization of combustion settings
- reduction of air-excess
- Optimization of fuel distribution parameters
- Reduction of air infiltration (false air)
- Fuel selection

Low-cost solution not to be neglected
Essential first step

LOW NOX SOLUTIONS

- Increase combustion chamber
 volume / post-combustion zone
- Staged combustion, with multiple air injection points to limit temperature gradients

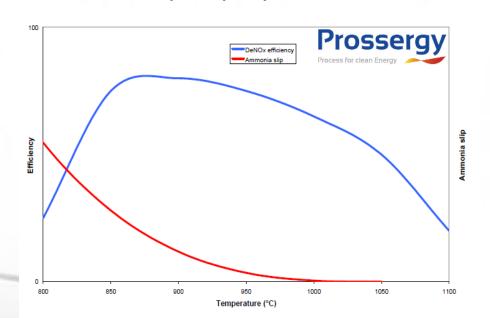
Not applicable to existing installations in some cases

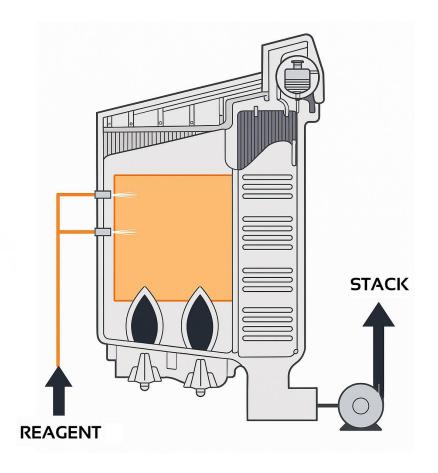
FLUE GAS RECIRCULATION

- Reduction of the partial pressure of O₂
- Enhanced mixing of the combustion gases
- -Risk: increase in CO and unburned compounds

Applicable to existing installations

Primary measures: limited effectiveness on existing installations because the geometry is fixed


SECONDARY TECHNIQUES


1 MAIN REACTION: $4 \text{ NH}_3 + 4 \text{ NO} + \text{O}_2 \Rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$

	SNCR	SCR
Catalyst	No	Yes
Temperature	850 – 1 050 °C	180 – 450 °C
Reagent	Ammonia or Urea (liquid or solid)	Mainly ammonia Could be urea
Efficiency	30 – 60 %	Until more than 95%
Investment	1	6 to 12

The reaction occurs in gas phase, without production of residues

- Reagent injection between 850 and 1050 °C
- Minimum residence time 0.5 sec
- Reagent:
 - Urea liquid solution 33 to 44% w
 - Ammonia water 20 to 24.5% w
- Stœchiometry from 1,5 to 5
- Several injection zones to follow temperature and thermal load variations
- NOx reduction up to 60% and more
- Beware of Ammonium Busilfate (ABS) deposit, due to ammonia slip

<u>DIAGNOSIS IS VERY IMPORTANT:</u> temperature mapping and reagent injection tests to validate performance, position of injection points and NH_3 slip

Important technical parameters

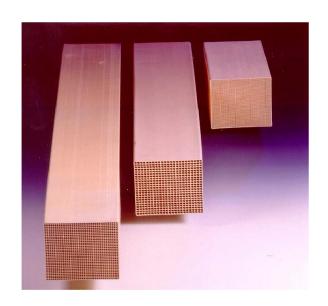
- Boiler geometry: residence time and temperature
- Boiler load variation: injection must occur at the correct temperature regardless of the load. <u>Important limitation of</u> <u>SNCR efficiency</u>
- Beware of NH₃ slip: ammonia limit and formation of ammonium salt deposits

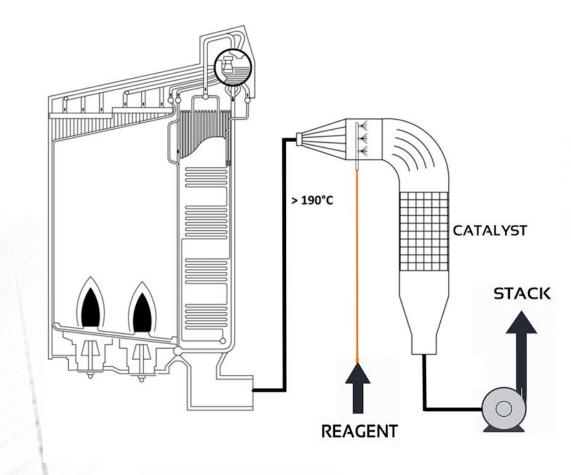
Parameters influencing cost:

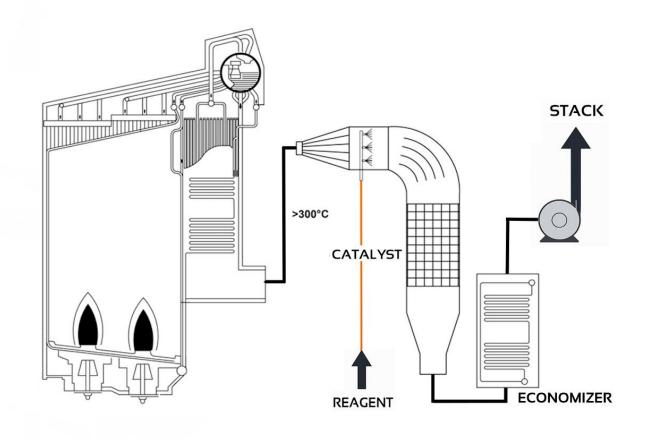
- Size of the installation and reagent storage
- Unloading and storage characteristics
- Tank volume and material
- Civil engineering requirements for the unloading and storage containment area
- Number of injection lances
- Type of reagent

Small size boiler (P < about 7 MW)

- Implementation of SNCR is challenging due to small size and short residence time
- Limited load variation
- One injection lance
- Use of urea, indoor installation protected from freezing
- Small storage capacity: supplied in 1 m³ containers


Medium size boiler (7 MW < P < 12-15 MW):


- Higher reagent flow rate
- One or several injection lances, with multiple possible zones
- Use of urea
- Storage in containers or tanks from 10 to 20 m³
- Supply by tanker truck

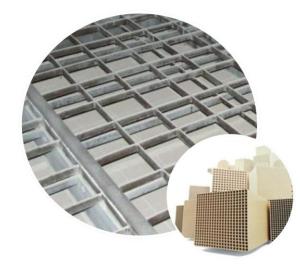

Large scale boiler (P> 12-15 MW): :

- Water-tube boilers with large combustion chamber volume
- Several injection zones depending on the load
- Possibility to use urea or ammonia water
- Storage in tanks of 30 m³ or more

- Use of a catalyst to increase the reduction efficiency and lower the reaction temperature to approximately 190 350°C.
- Reduction to 95% and more
 - Capex not very dependent on performance until 80-90% reduction
- Reagents:
 - Mainly NH₃ as liquid (ammonia water) or gas
 - Urea for high temperature only (> 300°C)
- Stoichiometry: approximately 1
- Importance of catalyst position:
 - Before / After dust filtering: poisoning
 - Before / After SO₂ treatment: ammonium salt deposits
- Monitoring of catalyst aging is important

WITHOUT SO₂

WITH SO₂


Types of catalyst support:

- Pellets: Smaller catalyst volume, excellent Performance/Temperature compromise
- Monolith: Low pressure loss, dust resistance

Fouling

Limitation of dust content – cleaning system

Ammonium bisulphate deposit

- NH₃ and SO₃ combine in the gas phase and form Ammonium Sulfate and Bisulfate whith solidification temperatures are respectively 280 and 150 °C.
- SO₂ content > 50-60 mg/Nm³: Operation above 250°C
- SO_2 content < 50 mg/Nm^3 : Operation between 190 and 250°C depending on the SO_2 content
- Possibility of regenerating the catalyst in situ or ex situ

Chemical poisoning

- Pb, As, P, Hg, Na, K ... etc.
- Be careful to biomass fuels

COMPARISON SNCR / SCR

SNCR			
Advantages	Disadvantages		
 Low investment cost Limited space requirement Well suited for target NOx reductions of about 30–60% 	 Solution not always applicable if furnace temperature is too high or residence time too short Efficiency depends on the boiler type and configuration Efficiency also depends on boiler load Monitoring of NH₃ slip required 		
Advantages	Disadvantages		
 Up to over 99% reduction efficiency Low reagent consumption Efficiency independent of boiler load Applicable to all types of installations No issues with NH₃ slip 	 Higher investment cost In some cases, flue gas reheating may be required Installation can sometimes be difficult Monitoring of catalyst fouling and poisoning is necessary 		

HYBRID DeNOx

Hybrid DeNOx solution developed by PROSSERGY

- Combining an optimized DeNOx SNCR and a small SCR
- The best of both technologies
- Optimized thermal efficiency

SNCR

- Revamping of an existing SNCR or installation of a new SNCR with an efficiency > 60%
- Controlled production of NH₃ slip to supply the SCR process

SCR

- Installation of an optimized SCR with reduced catalytic volume, downstream of the FGT and filtration system, allowing easy installation into the existing system
- No heating or regeneration system
- Continuous monitoring upstream NH₃ and/or NOx
- Easy assembly/disassembly of the catalytic charge

THERMAL EFFICIENCY

- If necessary, modification of the thermal installation to make the catalyst work in the correct temperature range
- Addition of an economizer downstream of the SCR to improve energy efficiency

HYBRID DeNOx

BENEFITS

- Limited cost: easy layout (small catalyst volume optimized with high SNCR efficiency)
- Possibility of adapting the type of catalyst to the application
- Possibility of installing an economizer under the catalyst at lower cost increased thermal efficiency
- Catalyst downstream filtration: no chemical poisoning compared to "High dust" SCR solutions
- Possibility of using urea, without switching to ammonia water, unlike a classic SCR, which strongly limits the CAPEX
- Effective ex-situ regeneration:
 - No pollution problems on site
 - Control of the process unlike online regenerations
 - No fuel usage and limited maintenance

DeNOx ON BIOMASS BOILER

SNCR small Boiler

- 3 7 MW boiler
- Mini DNX urea system
- Cost: 50 180 k€

SNCR Medium Boiler

- One or several boilers > 7 MW
- Opti DNX urea system
- Cost: 200 700 k€

SCR Large scale boiler

- SCR with low dust catalyst after baghouse filter
- Cost: 1 6 M€

PROSSERGY

ZA Charles Chana
Boulevard des mineurs
F-42 230 ROCHE LA MOLIERE

Tel: +33 (O)4 27 19 48 O2

contact@prossergy.com

Contact: Julien LARGUIER

Cell. +33 (0)6 95 32 54 00

www.prossergy.com

Process for clean Energy